google-site-verification=iUxCUgpoCQNGCS2CQuHi1L8aGqyfkykwcZUHtbSwrts NAD+ in Brain Aging and Neurodegenerative Disorders
top of page
< Back

NAD+ in Brain Aging and Neurodegenerative Disorders

Cell Metabolism

October 1, 2019

Lautrup, Sofie

Summary

NAD+ is a pivotal metabolite involved in cellular bioenergetics, genomic stability, mitochondrial homeostasis, adaptive stress responses, and cell survival. Multiple NAD+-dependent enzymes are involved in synaptic plasticity and neuronal stress resistance. Here, we review emerging findings that reveal key roles for NAD+ and related metabolites in the adaptation of neurons to a wide range of physiological stressors and in counteracting processes in neurodegenerative diseases, such as those occurring in Alzheimer’s, Parkinson’s, and Huntington diseases, and amyotrophic lateral sclerosis. Advances in understanding the molecular and cellular mechanisms of NAD+-based neuronal resilience will lead to novel approaches for facilitating healthy brain aging and for the treatment of a range of neurological disorders.

bottom of page